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Chapter 26 - RADIUS OF GYRATION CALCULATIONS 
 
 

The radius of gyration is a measure of the size of an object of arbitrary shape. It can be 
obtained directly from the Guinier plot [ln(I(Q)] vs Q2] for SANS data. The radius of 
gyration squared Rg

2 is the second moment in 3D.  
 
 
1. SIMPLE SHAPES 
 
First consider some simple shape objects.   

 
Figure 1:  Representation of the polar coordinate system for a disk. 
 
For an infinitely thin disk of radius R, Rg

2 is given by the following integral using polar 
coordinates.  
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2 = Rgx

2+ Rgy
2=

2
R 2

. 

 

 

x 

y 

r cos(φ)

rR 
φ 



 2

 
Figure 2: Representation of the spherical coordinate system for a sphere. 
 
In the case of a full sphere, the integration is performed with spherical coordinates.  
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The radius of gyration (squared) for the spherical shell of radii R1 and R2 is given by: 
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Figure 3:  Representation of the Cartesian coordinate system for a rectangular plate. 
 
For an infinitely thin rectangular object of sides W and H, the integration is performed in 
Cartesian coordinates.  
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Note that the moment of inertia I for a plate of width W, height H and mass M is also 
given by the second moment.  
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2. CIRCULAR ROD AND RECTANGULAR BEAM 
 

 
Figure 4: Representation of the cylindrical rod and rectangular beam.  
 
The radius of gyration for a cylindrical rod of length L and radius R is given by: 
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The radius of gyration for a rectangular beam of width W, height H and length L is given 
by: 
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This formula holds for a straight “ribbon” where W<H<<L.  
 
The value of Rg

2 for a cylindrical rod with radius R = 10 (diameter D = 20) and length L 
= 10 is Rg

2 = 58.3. This value is to be compared with the case of a rectangular beam with 
sides W = L = 20 and length L = 10 for which Rg

2 = 75.   
 
 
3. COMMENTS 
 
The radius of gyration squared can be calculated for other more complicated shapes as 
the second moment for each of the symmetry direction.  
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Figure 5: Case of a horizontal flat strip.  
 

 
Figure 6: Case of a circular ring.  
 
The radius of gyration for an infinitely thin circular ring of radius R is Rgz

2 = R2. This is 
obtained by spinning the ring in the horizontal plane (around the z-axis). Note that it is 
the same value for an infinitely thin spherical shell of radius R.  
 
 
4. TWISTED RIBBON 
 
The radius of gyration for rigid twisted shape objects are worked out here. Consider the 
simple case of a rigid helical wire, then the case of a rigid twisted ribbon with finite size 
thickness.  
 
 
Helical Wire 
 
Consider a very thin helically twisted wire aligned along the vertical z axis. Choose the 
origin of the Cartesian coordinate system at the center-of mass of the twisted wire. The 
helix has a radius R and a height L so that -L/2 ≤  z ≤  L/2. The parametric equation of 
the helix is: 
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 X = R cos(φ)       (8) 
 Y = R sin(φ) 
 Z = pφ/2π. 
 
Here p is the helix pitch and φ is the azimuthal angle in the horizontal plane. The wire 
position along the helix is represented by the vector )(r φ . Note that by definition of the 

center-of-mass, the average of this vector is null, < )(r φ > = 0.  

 
Figure 7: Schematic representation of the twisted wire.  
 
The radius of gyration (squared) Rg

2 is defined as follows: 
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Here r2(φ) = X2+Y2+Z2 = R2 + (pφ/2π)2. The azimuthal angle φ varies in the range:  
-πL/p ≤  φ ≤  πL/p.  
 
The φ integration is readily performed to give: 
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Note that this is the same result as for a cylindrical shell of radius R and height L. This is 
not surprising since a cylinder could be built by a number of twisted wires stacked 
vertically.  
 
 
Thin Twisted Ribbon 
 
The case of a thin twisted helical ribbon of width W can be worked out similarly using a 
two-variable parametric notation r2(φ,z) where φ is the azimuthal angle and z is the  
vertical ribbon width with –W/2 ≤  z ≤  W/2.  
 

 
Figure 8: Schematic representation of the thin twisted ribbon. 
 
Here, the variable Z is replaced by Z+z. The radius of gyration (squared) is therefore 
given by: 
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These involve contributions from <Z2> and <z2>. The cross term gives no contribution 
because it involves the null average <z> = 0.  
 
 
Thick Twisted Ribbon 
 
For the case of a twisted ribbon of horizontal thickness T, the variable R is replaced by 
R+ρ where –T/2 ≤  ρ ≤  T.  
 

 
Figure 9: Top view of a thick twisted ribbon.  
 
The calculation of the second moment proceeds as before: 
 
 X = ρ cos(φ)        (13) 
 Y = ρ sin(φ) 
 Z = pφ/2π. 
 
Here ρ is the polar coordinate variable in the horizontal plane with limits: R-T/2 ≤  ρ ≤  
R+T/2. In this case r2(Ζ,z,ρ) = ρ2 + (Z+z)2 where z is the same parameter as before. Rg

2 = 
< ρ2> + <(Z+z)2> involves two averages. The first average is: 
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         (14) 
The final result involving both (horizontal and vertical) averages is: 
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Note that all terms add up in quadrature since all cross terms (first moments) average to 
zero.  
 
 
5. GAUSSIAN POLYMER COIL 
 
The radius of gyration (squared) for a polymer coil is defined as: 
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Si refers to the position of monomer i with respect to the center-of-mass of the polymer 
coil and n is the total number of monomers per coil. The inter-distance vector between 
two monomers within the same macromolecule is defined as ijij SSS
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The vectorial notation has been dropped for simplicity.  
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Figure 10: Schematic representation of a Gaussian coil showing monomers i and j and 
their inter-distance rij. Note that ijij rS rr

=  in the notation used.  
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Here a is the statistical segment length, and <…> is an average over monomers. The 
following formulae for the summation of arithmetic progressions are used: 
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The radius of gyration squared becomes: 
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Note that taking the n >> 1 limit early on allows us to replace the summations by 
integrations. Using the variable x = k/n, one obtains: 
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Similarly, the end-to-end distance squared R1n

2 for a Gaussian polymer coil is given by: 
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 naR 22

n1 =  for n >> 1.      (23) 
 
These results are for Gaussian coils that follow random walk statistics (Flory, 1969).  
 
 
6. THE EXCLUDED VOLUME PARAMETER APPROACH 
 
The Flory mean field theory of polymer solutions describes chain statistics as a random 
walk process along chain segments. For Gaussian chain statistics, the monomer-monomer 
inter-distance is proportional to the number of steps: 
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Here a is the statistical segment length, ν is the excluded volume parameter, Sij represents 
an inter-segment distance and <…> is an average over monomers. The radius of gyration 
squared for Gaussian chains is expressed as: 
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i and j are a pair of monomers and n is the number of chain segments per chain. Three 
cases are relevant: 
 
(1) Self-avoiding walk corresponds to swollen chains with ν = 3/5, for which 
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(2) Pure random walk corresponds to chains in theta conditions (where solvent-solvent, 
monomer-monomer and solvent-monomer interactions are equivalent) with ν =  ½, for 

which na
2
1R 22

g = .  

(3) Self attracting walk corresponds to collapsed chains with ν = 1/3, for which 
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Note that the renormalization group estimate of the excluded volume parameter for the 
fully swollen chain is ν = 0.588 (instead of the 0.6 mean field value).  
 
Note also that the radius of gyration for a thin rigid rod can be recovered from this 
excluded volume approach by setting ν = 1 and defining the rod length as L = na.  
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This is the same result derived earlier for a thin rod.  
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QUESTIONS 
 
1. How is the radius of gyration measured by SANS? 
2. How is the center-of-mass of an object defined? 
3. Why is the radius of gyration squared for an object related to the moment of inertia for 
that object? 
4. Calculate Rg

2 for a full sphere of radius R. Calculate Rg
2 for a thin spherical shell of 

radius R.  
5. What is the value of Rg

2 for a Gaussian coil of segment length a and degree of 
polymerization n? How about the end-to-end distance? 
6. What is the radius of gyration squared for a rod of length L and radius R? 
 
 
ANSWERS 
 
1. The radius of gyration is measured by performing a Guinier plot on SANS data. The 
slope of the linear variation of ln[I(Q)] vs Q2 is Rg

2/3.  
2. The center-of-mass of an object is defined as the spot where the first moment is zero.  
3. The radius of gyration squared and the moment of inertia for that object are both 
expressed in terms of the second moment.  
4. Rg

2 for a full sphere of radius R is given by:  
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. Rg
2 for a thin spherical shell is 

simply given by: Rg
2 = R2.  

5. For a Gaussian coil of segment length a and degree of polymerization n, one can 
calculate the radius of gyration squared as Rg

2 = 6/na 2  and the end-to-end distance 
squared as R1n

2 = na 2 .  
6. The radius of gyration squared for a rod of length L and radius R is given by: 

22
2

g 2
L

3
1

2
RR ⎟

⎠
⎞

⎜
⎝
⎛+= .  

 


